

Effectiveness of Kinesthetic Sensing in In-Hand Rotation of Objects with an Eccentric Center of Mass

Project Website: https://cold-young.github.io/kinesthetic rotation/

Watch the project video!

Chanyoung Ahn¹, Sungwoo Park^{1,2} Donghyun Hwang^{1†} ¹Korea Institute of Science and Technology, ²Korea University {chanyoung.ahn; sungwoo.park; donghyun}@kist.re.kr

INTRODUCTION

Research Aim

- Investigation of how kinesthetic feedback (joint forces and torques) enables adaptation to object properties such as weight and center of mass (CoM)
- Evaluation of the effectiveness of reinforcement learning in leveraging kinesthetic feedback for robust downward-facing in-hand rotation

PERFORMANCE EVALUATION

Impact on Sensory Modalities on Performance

Three state configurations: without kinesthetic feedback, with kinesthetic \checkmark feedback, and with PCA-compressed kinesthetic feedback

Test six novel objects with unknown masses

Test nine novel objects with unknown CoM positions

PROBLEM FORMULATION

Task Objective

- Exploration of stable in-hand rotation strategies for cylindrical objects with an eccentric CoM
- Target: Object rotation toward a downward-facing goal within a 5-second rollout, maximizing alignment-based rewards

Formulation as MDP

Task formulated as an MDP with state, action and reward definitions

Train set

def

Test set: Unknown mass and CoM

Results

Demonstrate that kinesthetic feedback significantly improved performance in in-hand rotation task

1. Performance on Unknown CoM position

- **Action:** 16-DoF joint position commands
 - $ilde{a}_t = \eta a_t + (1-\eta) ilde{a}_{t-1} ~~~~ t \geq 1, \, ilde{a}_t = 0, \, \eta = 0.035$
- **Reward:** alignment with goal, penalty for fall/contact, velocity constraint, success bonus (see Table 1)

Table 1. Reward Components

$r_{\rm rot}$	Alignment with target orientation
r_{fall}	Penalty when the object falls off the table
$r_{\rm cont}$	Penalty for contact between object and table
$r_{ m vel}$	Penalty for excessive rotational speed
$r_{ m dist}$	Reward based on proximity to the target pose
r_{goal}	Sparse reward for achieving the final goal orientation

State: joint angles, object pose, goal orientation, delta rotation,

	Max Reward	Pre-trained	Unknown	Unknown
	(mean)	Samples	Mass	CoM Positions
Propriocontion	419.05	4.47	3.29	2.90
riopiloception	\pm 92.41	\pm 1.14	\pm 0.95	± 0.77
Proprioception	477.30	5.01	3.73	3.35
+ Kinesthesia	± 143.31	\pm 1.75	\pm 1.26	± 1.19
Proprioception	560 71	6 78	6 87	6 95
+ Kinesthesia	-104.50	U.70	U.07 ⊥ 1 25	0.93 ⊥ 1.26
with PCA	± 104.39	I.24	± 1.35	± 1.30
		4 5 0	2.00	2.40.

1.52X 2.09x 2.40x

fingertip pose, previous target, and kinesthetic feedback (F/T)

EVALUATION SETUP

Simulation Setup

- Used 25 cylindrical objects with varying mass and CoM
- Three policy variants differ only in observation modalities (see Table 2):

Simulation: Isaac Sim with 4096 parallel environments Training: PPO, 40K steps, Five random seeds **Evaluation:** 500 rollouts per instance Hardware: Single RTX 4090 GPU

CONCLUSION & FUTURE WORK

Conclusion

- Improved adaptability through kinesthetic feedback in in-hand manipulation
- ✓ 1.52-, 2.09-, and 2.40-times performance from incorporating kinesthetic sensing across CoM variations

Future Work

Extend the current approach to real-world robotic experiments to \checkmark assess robustness under sensor noise and mechanical compliance

2025 IEEE International Conference on Robotics & Automation 19 – 23 May, Atlanta, USA

www.dhwanglab.com