



# A Reinforcement Learning Testbed for Deformable Object Manipulation using Visuotactile Sensing

**Presenter:** Chanyoung Ahn

Master's Thesis

Robotics Program, KAIST

**Advisor:** Daehyung Park

#### Introduction

#### Motivation

- Deformable Object Manipulation (DOM)
  - Manipulation of deformable objects can have various applications in daily life.







https://youtu.be/OXzW3QB0anc?si=DAEriBhcRaMJr1qa https://youtube.com/shorts/cLJWYsiDf0Q?si=sJCZmZVb6iNSuCUI https://youtu.be/1VXX6vUCwV4?si=1Me\_JrcRGPDU0O-z

#### Introduction

- Motivation
  - Deformable Object Manipulation (DOM)



#### Introduction

Motivation (Wrap up)

Heterogeneous

**Deformable Object Manipulation** 

**Vision + Tactile sensing** 

**Simulated Testbed** 

#### Problem statement

We aim to build a testbed for learning DOM skills with visuotactile sensing

Conventional testbeds do not provide a direct way to obtain tactile information from deformable objects



# Proposed method

We introduce a visuotactile testbed for deformable object manipulation, integrating a novel architecture of tactile sensor leveraging collision cascades.





6

#### Testbed for Deformable Object Manipulation (DOM)

Previous most testbed developments focus on only vision-based DOM

#### SoftGym [2]



Transport Water



Fold Cloth



Pour Water



Spread Cloth



Straighten Rope



**Drop Cloth** 

#### DeformableRavens [3]



**DEDO** [4]



<sup>[2]</sup> Lin, Xingyu, et al. "Softgym: Benchmarking deep reinforcement learning for deformable object manipulation." Conference on Robot Learning. PMLR, 2021.

<sup>[3]</sup> Seita, Daniel, et al. "Learning to rearrange deformable cables, fabrics, and bags with goal-conditioned transporter networks." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.

<sup>[4]</sup> Antonova, Rika, et al. "Dynamic environments with deformable objects." Thirty-fifth conference on neural information processing systems datasets and benchmarks track (Round 2). 2021.

#### Testbed for Deformable Object Manipulation with Tactile Sensor

Previous tactile-based gym provides binary tactile sensor for DOM



[5] Pecyna, Leszek, Siyuan Dong, and Shan Luo. "Visual-tactile multimodality for following deformable linear objects using reinforcement learning." 2022 IEEE IROS

#### Testbed for Tactile-based manipulation

Previous tactile-based gym provides tactile sensor for rigid body manipulation





**Optical tactile sensor** 

Only rigid body
No deformable

[6] Lin, Yijiong, et al. "Tactile gym 2.0: Sim-to-real deep reinforcement learning for comparing low-cost high-resolution robot touch." IEEE Robotics and Automation Letters 7.4 (2022): 10754-10761.

| Gym                           | deformable | heterogenous<br>deformable | vision | tactile         | DOM RL | Physics engine |  |
|-------------------------------|------------|----------------------------|--------|-----------------|--------|----------------|--|
| SoftGym<br>[CoRL 20]          | 0          | X                          | Ο      | X               | 0      | FleX           |  |
| DeformableRavens<br>[ICRA 21] | 0          | X                          | 0      | X               | 0      | Pybullet       |  |
| DEDO<br>[NeurIPS 21]          | 0          | X                          | 0      | X               | 0      | Pybullet       |  |
| SoftSlidingGym<br>[IROS 22]   | 0          | X                          | 0      | O, binary       | 0      | FleX           |  |
| Tactile Gym 2.0<br>[RA-L 22]  | Χ          | X                          | 0      | O, Image        | Х      | Pybullet       |  |
| DetactGym(ours)               | Ο          | Ο                          | Ο      | O, 3 axis force | 0      | PhysX 5        |  |

Vision

Vision + Tactile

#### **❖** DetactGym



**Heterogeneous** deformable

Vision + Tactile

#### ❖ DetactGym







- CPU/GPU parallel computing performance for large simulations
- Realistic deformable(FEM method)/fluid/cloths

DetactGym: Deformable objects



**Heterogeneous DOM** 

• Heterogeneous deformables, including soft objects with rigid parts

**❖** DetactGym: Vision and Tactile sensor



DetactGym: Tactile sensor



DetactGym: Tactile sensor



DetactGym: Tactile sensor



- DetactGym: Tactile sensor
  - ✓ Why is it difficult to provide tactile sensing in DOM testbed?





18

- DetactGym: Tactile sensor
  - ✓ Why is it difficult to provide tactile sensing in DOM testbed?



Bullet 3, <a href="https://github.com/bulletphysics/bullet3/pull/4413">https://github.com/bulletphysics/bullet3/pull/4413</a> 2023.02.25 FleX, <a href="https://developer.nvidia.com/isaac-gym">https://developer.nvidia.com/isaac-gym</a>, Isaacgym release 4

- DetactGym: Tactile sensor
  - ✓ Why is it difficult to provide tactile sensing in DOM testbed?

```
Surface impulse, contact mesh (Bullet 3)

Stress, surface mesh normal (FleX)
```

. X (PhysX)

What if we are unable to get deformable information from simulators?

Bullet 3, <a href="https://github.com/bulletphysics/bullet3/pull/4413">https://github.com/bulletphysics/bullet3/pull/4413</a> 2023.02.25 FleX, <a href="https://developer.nvidia.com/isaac-gym">https://developer.nvidia.com/isaac-gym</a>, Isaacgym release 4

DetactGym: Tactile sensor

What if we are unable to get deformable information from simulators?





#### DetactGym: Tactile sensor















DetactGym: Tactile sensor





**❖** DetactGym: Tactile sensor







DetactGym: Tactile sensor









**❖** DetactGym: Overall Framework



DetactGym: Vision sensor



**❖** DetactGym: Vision sensor



**❖** DetactGym: Vision sensor



**❖** DetactGym: Overall Framework



**❖** DetactGym: Overall Framework





[7] Mittal, Mayank, et al. "Orbit: A unified simulation framework for interactive robot learning environments." IEEE Robotics and Automation Letters (2023).

**❖** DetactGym: Overall Framework



[7] Mittal, Mayank, et al. "Orbit: A unified simulation framework for interactive robot learning environments." IEEE Robotics and Automation Letters (2023).

**❖** DetactGym: Overall Framework



[7] Mittal, Mayank, et al. "Orbit: A unified simulation framework for interactive robot learning environments." IEEE Robotics and Automation Letters (2023).

**❖** DetactGym: Overall Framework



[7] Mittal, Mayank, et al. "Orbit: A unified simulation framework for interactive robot learning environments." IEEE Robotics and Automation Letters (2023).

# **Experiments**

❖ Soft-lift-v0
Goal

• Minimize deformation during lift deformable objects



#### **Minimize deformation**



## **Experiments**

❖ Soft-lift-v0
Goal

• Minimize deformation during lift deformable objects

**Problem:** How to evaluate deformation?

> Provide '**Deform Chamfer Distance**' metric

<sup>\*</sup> Appendix: Chamfer Distance

❖ Soft-lift-v0

#### **Chamfer Distance of Deformable Object (CDDO)**

Chamfer Distance (CD)

Measure the shape dissimilarity between point clouds [8]

$$d_{CD} = (S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$



[8] Lin, Fangzhou, et al. "Hyperbolic chamfer distance for point cloud completion." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

❖ Soft-lift-v0

**Chamfer Distance of Deformable Object (CDDO)** 

Chamfer Distance (CD)

Measure the shape dissimilarity between point clouds [8]





• CD consider translation, rotation, deformation ...

[8] Lin, Fangzhou, et al. "Hyperbolic chamfer distance for point cloud completion." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

**❖** Soft-lift-v0

**Chamfer Distance of Deformable Object (CDDO)** 

Measure the shape **deformation between point clouds** 











❖ Soft-lift-v0

#### **Chamfer Distance of Deformable Object (CDDO)**

Measure the shape **deformation between point clouds** 





(1) Remove difference of point cloud by translation

#### ❖ Soft-lift-v0

#### **Chamfer Distance of Deformable Object (CDDO)**

Measure the shape **deformation between point clouds** 



41





(2) Remove difference of point cloud by rotation

$$S_2' = \begin{bmatrix} R & T_{xyz} \\ 0 & 1 \end{bmatrix} y_{\in S_2}$$

[8] Lin, Fangzhou, et al. "Hyperbolic chamfer distance for point cloud completion." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

**❖** Soft-lift-v0

### **Chamfer Distance of Deformable Object (CDDO)**

Measure the shape **deformation between point clouds** 











(3) Remove difference of point cloud by scale through normalization

$$y'_n = \frac{y' - x_{min}}{x_{max} - x_{min}}, y' \in S'_2 \quad x_n = \frac{x - x_{min}}{x_{max} - x_{min}}, x \in S_1$$

#### ❖ Soft-lift-v0

#### **Chamfer Distance of Deformable Object (CDDO)**

Measure the shape **deformation between point clouds** 





$$d_{CDC} = \sum_{y_n'} \min_{x_n} \left\| x_n - y_n' 
ight\|_2^2 + \sum_{x_n} \min_{y_n'} \left\| x_n - y_n' 
ight\|_2^2$$

❖ Soft-lift-vO

#### Goal

Minimize deformation (CDDO < thereshold) during lift deformables</li>

**Problem:** How evaluate deformation?

> Provide 'Deform Chamfer Distance' metric

$$d_{CDC} = \sum_{y_n'} \min_{x_n} \left\| x_n - y_n' 
ight\|_2^2 + \sum_{x_n} \min_{y_n'} \left\| x_n - y_n' 
ight\|_2^2$$

<sup>\*</sup> Appendix: Chamfer Distance, Deform Chamfer Distance

**❖** Soft-lift-v0

#### Goal

Minimize deformation (CDDO < thereshold) during lift deformables</li>

**Problem:** How evaluate deformation?

Provide 'Chamfer Distance of Deformable Object' metric



<sup>\*</sup> Appendix: Chamfer Distance, Deform Chamfer Distance

46

## **Experiments**

#### **❖** Soft-lift-v0

• Evaluating success rate of *Soft-lift-v0* with 200 episodes in visuotactile, tactile, force, and vision

| Rate of Success | Visuotactile | Tactile<br>2*3 force array | Force | Vision |
|-----------------|--------------|----------------------------|-------|--------|
| PPO             | 80%          | 70%                        | 55%   | 54%    |

<sup>\*</sup> The training spans 24,000 steps across four parallel environments





4x

Success case

Fail case

#### **❖** Soft-lift-v0

• Evaluating success rate of *Soft-lift-v0* with 200 episodes in visuotactile, tactile, force, and vision

| Rate of Success | Visuotactile | Tactile<br>2*3 force array | Force | Vision |
|-----------------|--------------|----------------------------|-------|--------|
| PPO             | 80%          | 70%                        | 55%   | 54%    |

4x

2\*3 force array

<sup>\*</sup> The training spans 24,000 steps across four parallel environments







Fail case



Tactile Force

### Conclusion

#### Contributions

- Provide a simulated testbed for training and assessing DOM skill using visuotactile sensing
- DetactGym enables learning skills in soft-lift-v0 with visual or tactile sensing through RL.
- We highlight the effectiveness of tactile information over visual cues in manipulating deformable while minimizing deformation.

#### Next research plan

- Provide tactile sensing from deformation energy...
- Develop a complex environment that assess tactile sensors' benefits on DOM
- Provide realistic vision sensor(partially point cloud) for parallel RL environment





## Thank you for your attention

Any question or feedback will be welcome