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Abstract

Our aim is to create a human-expert ma-
nipulation dataset of deformable objects to-
ward learning deformable manipulation. How-
ever, the data collection is challenging due to
the limited sensing capability against to the
high number of degree-of-freedom and com-
plicate deformation/contact of soft bodies. Fur-
ther, the self occlusion restricts the observa-
tion in grasping. In this work, we introduce a
haptic-telemanipulation suite by adopting a hap-
tic glove with a state-of-the-art physics simula-
tor, IsaacGym from NVIDIA. The suite enables
users to obtain realistic visual-and-tactile feed-
back as well as collect any part of object states
while teleoperating a robotic gripper. We evalu-
ate the suite by building one hundred demonstra-
tions of dataset given five shape-and-property
deformable objects.
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I. INTRODUCTION

We present a problem of creating deformable object
manipulation (DOM) dataset toward modeling of dexter-
ous manipulation skills as human experts. However, the
dataset requires observing the state of deformable object
during the human demonstrations, though the limited sens-
ing capability restricts recording detailed states such as the
high degree-of-freedom (DOF), the complicate deforma-
tion, and the precise contact of soft bodies [1]. Further,
the sensor occlusion is often another restriction of record-
ing states in that either the target objects or fingers hide
each other from vision sensors. To resolve the incomplete
sensing in demonstrations, we need a new data collection
method that is a task-and-object agnostic framework and
also does not intervene the interaction between a human
expert and a target object for the integrity of the dataset.

We propose a virtual reality-based telemanipulation
suite that allows an expert hand to manipulate simulated
deformable objects while recording complete observations

Fig. 1. A capture of telemanipulation task and five objects used
in data collection, where a human operator wears the haptic glove
(blue) and picks up a simulated deformable object (i.e., a cuboid)
with haptic and force feedback.

via a state-of-the-art deformable physics simulator, Issac-
Gym from NVIDIA [2]. The suite consists of telemanip-
ulation and data-collection components. The former aims
to transfer the real hand movement, observed via an hap-
tic glove (i.e., SenseGlove DK1), to a simulated gripper
(i.e., Robotiq 2F-85) by retargeting the configurations. The
latter records the gripper, the object, and their interaction
states by precisely simulating on the FLEX physics engine.
We performed 100 times of pick-up experiments with 5
types of deformable object. The high-success rate of ex-
periment result shows the suite is suitable for collecting
human demonstrations toward learning for DOM.

II. METHOD

The proposed telemanipulation suite allows a human
operator to grasp a simulated deformable object in Issac-
Gym environment via a master-slave robotic grasp system.
The master device is a wearable exoskeleton glove that can
sense the 4-DOF movement of the human fingers and re-
turn force/haptic feedback to the fingers (see Fig. 2). The
slave device is a simulated 2-DOF parallel-jaw gripper that
can sense the finger-tip contact and grasp deformable ob-
jects with physics engine, FLEX. To transfer the human
hand motion to the parallel-jaw gripper, we retarget not
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Fig. 2. Overall architecture of the proposed telemanipulation
suite. The telemanipulation part exchanges the human behavior
observed on the master robot glove to the slave robot gripper by
retargeting the mechanical configuration. The data collection part
records a set of time-series observations including the slave grip-
per, the object, their interaction states.

only the master’s wrist pose but also its pinch-grasp mo-
tion (i.e., distance d between the thumb and the index fin-
gers) to the slave. To do that, we compute the desired trans-
formation of the slave frame T O′

slave, t+1 at time step t + 1
with respect to the simulation origin O′ after measuring
the master frame T O

master, t at time step t with respect to the
real-world origin O. The master and slave frames are the
6-DOF HTC VIVE tracker frame attached on the wrist and
the wrist-base frame of the simulated gripper, respectively
(see Fig. 3). Given human motion T master

slave, t at time step t, the
updated master-tracker pose T O

master, t+1 returns the desired

slave pose in the simulation given the offset frame T O′
O be-

tween the real and the simulated origins:

Slave motion︷ ︸︸ ︷
T O′

slave, t+1 =

Offset︷︸︸︷
T O′

O

Tracker motion︷ ︸︸ ︷
T O

master, t

Human motion︷ ︸︸ ︷
T master

slave, t (1)

= T O′
O T O

master, t+1, (2)

where T O′
O is a pre-defined offset in this work.

After retargeting the master motion to the slave in the
Cartesian space, we compute the desired joint configura-
tion of the gripper

Wrist frame to the simulator global frame T wrist
sim , the in-

verse matrix of T sim
wrist , is a input of the inverse kinematics

solver for the wrist robot. By setting a T tracker
wrist as a identical

matrix, we calculated wrist joint angles
−→
θ wristrobot .

−→
θ wrist robot = InverseKinematics((T wrist

sim )−1) (3)

Second, the teleoperation framework retargets the slave
gripper from the haptic glove. The forward kinematics
solver calculate fingertip position Pthumb and Pindex from

Fig. 3. An illustration of the retargeting process. We map the wrist
pose and fingertip distance of the master glove to those of the
slave gripper.

the haptic glove. Using the Euclidean distance D of the
two point vectors, the inverse kinematics solver compute
gripper joint angle

−→
θ gripper by geometrical method.

−→
θ gripper = InverseKinematics(Pthumb,Pindex) (4)

Fig. 3 explains the kinematics and mapping between mas-
ter devices and slave robots.

A. Data Collection

Data collection framework aims to store information in
simulator-deformable object state, slave device state, and
contact information. The database format is HDF5, de-
tailed in Table 1. Initial pose means a pre-defined local
frame of object with respect to the global frame in the
simulator. Elastic modulus and Poisson ratio determine
object stiffness and deformability, respectively. Based on
these properties, Flex calculates the object state with the
telemenipulated gripper. Data collection framework stores
the state information every time step on simulation. No-
tably, the frequency of the data collection is equal to the
simulation time step-about 10-20 frames per second. This
synchronization provides advantages to reconstructing the
state information perfectly, potentially offering a baseline
for off-policy learning. We demonstrate the data collection
experiment in the Section 3.

Category Exploration Type Unit
General Description

Object position FloatArray[3] mInitial Pose
(Pre-defined local frame) Object Orientation (Quat.) FloatArray[4] -

Density Float kg/m3

Elastic Modulus Float PaObject
Property Poisson Ratio Float -

Triangle Mesh Edge Connection IntArray[N1, 3] -Object Mesh
Information Tetrahedron Mesh Edge Connection IntArray[N2, 4] -

Per Time Step
Simulation Time Float sec

Node Position FloatArray[N3, 3] m
Force on Node FloatArray[N3, 3] NObject State
Von-mises Stress on Triangle element FloatArray[l] Pa
Wrist Position FloatArray[3] m
Wrist Orientation (Quat.) FloatArray[4] -Kinematics
Gripper Jaw Length (D) Float m
Normal Force on the Left Gripper Tip Float NContact Normal Force on the Right Gripper Tip Float N

Table 1. Simulation setup for the environments. N1, N2, and N3 is
the number of connection edge, tetrahedron elements, and nodes,
respectively.
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Fig. 4. Demonstration on the robot pick-up scenario, where a user virtually grasps the blue-color of simulated rope in IssacGym by
observing its state via a 2D screen. In the simulation, the gripper is mounted on the invisible 6 DOF wrist robot.

III. RESULT

To evaluate the feasibility of the telemanipulation
framework, we collected one hundred data with five ob-
jects ∈ {Cuboid, Sphere, Torus, Cylinder, Rope} and four
elastic modulus E ∈ {104,105,106,107}. The purpose
of the dataset is to acquire complete state information
containing human intelligence how to manipulate a de-
formable object. We set experiment for the pickup task,
pick and move the object from [0,0,0]m to [0,0.6,0]m. The
demonstrations are in Fig. 4. Fig. 4a and 4b indicate the
master device and slave robot, respectively. Our teleoper-
ation framework retargets the slave robot from the master
device pose and kinematics, manipulating rope.

Fig. 5 shows the stored data as a HDF5 format. Each
node composes object position, so we defined object fea-
ture pose

−→
P f eature represents the mean of the N3×3 object

node position vector
−→
P (N3,3).

−→
P f eature =

1
N3

N3

∑
i=1

−→
P (i,3) (5)

Importantly, the wrist pose in the Posing region changed
carefully, meaning that the expert implemented pick action
from his optimal policy. It means that our dataset inter-
nally contains human intelligence for the manipulation and
could be appropriate for the off-policy learning dataset. Af-
ter the Posing region, the expert closes the gripper and per-
forms the pickup task. Gripper length affects the contact
force and object stress (Fig. 5bcd), changing the magnitude

of a force feedback to the expert. If the expert perceives the
force feedback, The grasping state can define stable and
moves deformable objects to the goal height 0.6m .

We evaluated the success rate in Table 2. The average
of success rate is 93%. Success rate shows a dependency
with a elastic modulus. As the elastic modulus decreases,
the gripper deforms the object with less force, decreasing
the contact force. In this case, the gripper cannot apply a
enough friction force corresponding to gravity. At the same
time, objects swing unpredictably, creating disturbances
and increasing instability. This is why deformable object
manipulation and data collection is more challenging than

Fig. 5. Stored data on the HDF5 database. a) Gripper orientation
(arrows) and the height of the

−→
P f eature and gripper (lines) [m]. b)

Contact forces [N]. The force on the bottom tip is silightly higher,
due to the object weight. c) mean Von-mises stress [KPa], and d)
the distance between gripper tip [mm].
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a rigid body. However, in our framework, the human ex-
pert completes the pickup task in E = 104 (similar to tofu),
with an average success rate 80% within 15 seconds.

Young’s
Modulus Cuboid Sphere Torus Cylinder Rope Net

104 0.83 1 0.63 0.83 - 0.8
105 0.83 1 0.67 1 1 0.87
106 1 1 1 1 1 1
107 1 1 1 1 1 1
Net 0.91 1 0.78 0.95 1 0.93

Table 2. The success rate of the experience. We succeed exper-
iment 100 times with the 108 trials. Higher elastic modulus E
means less elasticity

IV. CONCLUSION

REWRITE: We aim to create a human-expert manip-
ulation dataset of deformable objects for learning de-
formable manipulation. In this work, we introduced a
haptic-telemanipulation suite by adopting a haptic glove
with a physics simulator. We evaluated the suite of the
dataset from a human expert by grasping five shape-and-
property deformable objects. In the future, we will use the
dataset for learning DOM.
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