

SuperLU_DIST와 PaScaL_TDMA를 이용한 대형희소행렬의 병렬성능 벤치마크

Parallel performance benchmark of large sparse matrix using SuperLU_DIST and PaScaL_TDMA

한국과학기술정보연구원 국가슈퍼컴퓨팅본부

안찬영(coldyoung@kisti.re.kr), 권오경(okkwon@kisti.re.kr), 강지훈(jhkang@kisti.re.kr)

Introduction

Sparse matrix and its parallel solver

Sparse matrix

- A matrix in which most of the elements are zero.
- Originate from systems that are modeled with equations describing sparse relationships between variables.

Results and Discussion

Benchmark test results

SuperLU-DIST

- Process-grid affects on parallel performance
- 1.7x reduction in total

- Finds various scientific and engineering applications : Scientific computing, optimization, and machine learning.

High-performance parallel solver

- Efficient handling and solving of large sparse matrices are crucial.
- Various solvers according to the problems and applications : Direct, iterative, and multi-grid based solvers.
- Performance is highly dependent on numerical algorithm, sparse. matrix representation, and parallel programming models.

Motivation and purpose

Inefficiency of general sparse matrix solver

- Well-known general-purpose sparse matrix solvers are versatile and convenient for solving any kinds of large sparse matrix system.
- However, general solvers can not be as efficient as specialized solvers that only target a specific sparse matrix.
- Comparative performance benchmarks between general and specialized solvers

computing time by optimizing parameters

- None-zero ratio effect

Parallelization performance of lower non-zero ratio is $3\sim9$ times worse than that of dense sparse matrix

SuperLU-dist and STRUMPACK

- SuperLU_dist tends to outperform STRUMPACK for the matrices that have broader distribution near the diagonal components.
- Benchmarks on parallel performance of Ax=b by using large sparse matrix files.
- Highlight on suitable sparse matrix solvers for target problems for computational performance.

Methodology

Experimental setup

- Hardware KISTI Nurion Supercomputer
 - 8,305 compute nodes interconnected with high-speed network.
 - Each node has a many-core processors, 68-Core Intel Xeon Phi 7250.

Benchmark tests

- Comparative performance benchmark of three parallel solvers: SuperLU-dist, Strumpack, and PaScaL_TDMA
- Benchmark total and factor times with nine sparse matrices:
- Matrix dimensions: $10^4 \sim 10^7$
- Matrix nonzero ratio: $10^{-4} \sim 10^{-7}$

Comparison of three solvers: tridiagonal matrix (256³ TDM)

- PaScaL_TDMA outperforms 10⁴x faster than two baseline solvers for performing tridiagonal matrix computations.
- Parallel efficiency of PaScaL_TDMA remains stable: Continuous reduction on execution time as increasing cores (SuperLU-DIST: over 16 ncpus, STRUMPACK: 64 ncpus)

• Select nine matrices with diagonal component structures

- Tested in KISTI Nurion using 1 ~ 4096 cores of KNL nodes

	r/c	nnz	ratio	
g7jac200	59,310	717,620	2.38E-04	
torso1	116,158	8,516,500	6.31E-04	
twotone	120,750	1,206,265	8.40E-05	
stomach	213,360	3,021,648	6.64E-05	
ML_Laplace	377,002	27,582,698	1.95E-04	
RM07R	381,689	37,464,962	2.57E-04	
mc2depi	525,825	2,100,225	7.60E-06	
ecology1	1,000,000	4,996,000	5.00E-06	
256 ³ TDM	16,777,216	50,331,646	1.79E-07	_

Conclusion and Plans

Parallel performance benchmark

- Performance benchmarks highlight the significance of specialized solvers for target problem and specific matrix structure.
- PaScaL_TDMA that is dedicated for distributed tridiagonal systems, is much faster the other two general and versatile sparse matrix solvers.
- Strong/weak scalability test planned
 - Compare strong/weak scalability of three linear solvers until thousands of compute nodes on KISTI Nurion system.
 - Extend the test cases to high-dimensional sparse matrices for real applications.